Optimization for the Production of Deoxynivalenol and Zearalenone by Fusarium graminearum Using Response Surface Methodology
نویسندگان
چکیده
Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) are the mostcommon contaminants in cereals worldwide, causing a wide range of adverse health effects onanimals and humans. Many environmental factors can affect the production of these mycotoxins.Here, we have used response surface methodology (RSM) to optimize the Fusarium graminearumstrain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubationtemperature and time, were optimized using a Box-Behnken design (BBD). The optimizedconditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days,while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL,respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins werestill obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days.The corresponding experimental values, from the validation experiments, fitted well with thesepredictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, whichare further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pHis a determinant for DON production, while an alkaline environment and lower temperature(approximately 15 °C) are favorable for ZEN accumulation. After extraction, separation andpurification processes, the isolated mycotoxins were obtained through a simple purification process,with desirable yields, and acceptable purity. The mycotoxins could be used as potential analyticalstandards or chemical reagents for routine analysis.
منابع مشابه
Production of deoxynivalenol and zearalenone by isolates of Fusarium graminearum Schw.
The production of deoxynivalenol (DONI) on rice, corn, wheat, and barley grains by Fusarium graminearum Schw. NRRL 5883 was investigated. Highest yields (91.9-202 ppm) were obtained on rice; yields on the other substrates were: corn (34.1-84.5 ppm), wheat (3.6-24.4 ppm), and barley (0-6.6 ppm). Fifty isolates of Fusarium from corn inoculated in the field in 1979 with a mixture of strains of F. ...
متن کاملDetermination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry
Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-591...
متن کاملAssessment of Inhibitory Effects of Citrus Flavanones on Deoxynivalenol Production Using Response Surface Methodology
Background: Deoxynivalenol (DON) is a mycotoxin produced mainly by Fusarium graminearum in grains such as wheat and maize. The aim of this study was to evaluate the inhibitory effects of citrus flavanones including, naringin (NAR), hesperidin (HES), and neohesperidin (NEO) on deoxynivalenol production using Response Surface Methodology (RSM). Methods: The studied flavanones were extracted fr...
متن کاملThe effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae
Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON) production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol), such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by a...
متن کاملExpression Analysis of PKS13, FG08079.1 and PKS10 Genes in Fusarium graminearum and Fusarium culmorum
Background: Identification and quantification of mycotoxins produced by Fusarium species are important in controlling fungal diseases. Objectives: Potential of zearalenone, butenolide and fusarin C production was investigated in five Fusarium graminearum and five F. culmorum isolates at molecular level. Materials and Methods: Presence of PKS13, FG08079.1 and PKS10 genes, associated with produ...
متن کامل